Термоэлектрогенераторы, наноспутники и солнечные батареи. Как добыть энергию в космосе

Любой космический аппарат, особенно предназначенный для длительной миссии, должен быть оснащен собственным источником энергии. В настоящее время широко используются солнечные батареи, фотовольтаические элементы и термоэлектрогенераторы. Однако им на смену уже скоро могут прийти наноспутники, оснащенные электродинамическими тросовыми системами.

Покорение глубокого космоса

Отправляясь в дальнее путешествие на машине, одним из важных аспектов будет постоянное слежение за наличием бензина. Конечно, необходимо тщательно просчитать маршрут, но базовая схема такова: как только его количество подходит к концу, нужно сделать остановку у ближайшей заправочной станции, запастись топливом и ехать дальше. До следующей заправки.

Ракеты и космические аппараты в этом ничем не отличаются от автомобилей – им тоже нужно топливо. Но есть одно «но» – заправок в космосе еще никто не построил. Что делать, если аппарат не просто нужно вывести на орбиту Земли, а совершить действительно длительное путешествие, за пределы Солнечной системы?

Сколько стоит отправить посылку в космос?

Если вы когда-нибудь зададитесь такой целью, вариантов решения проблемы на самом деле немного. Во-первых, можно пожертвовать всевозможным оборудованием на борту и отправить в космос действительно большой запас горючего. Скорее, это даже скорее просто будет гигантский летающий резервуар с топливом – настолько много его понадобится.

Сомневаемся, что вам такой способ придется по вкусу – каждый дополнительный килограмм веса при запуске ракеты обойдется вам очень и очень дорого. Если быть точнее, около десяти тысяч евро. Космические аппараты «Вояджер-1» и «Вояджер-2», относящиеся к так называемым «deep space probes» – космическим станциям, исследующим глубокий космос – бороздят Солнечную систему уже сорок лет. При всем желании отправить достаточно топлива для столь серьезных миссий у вас никак не получится по элементарным экономическим причинам. Да и о научной пользе от такого запуска говорить не придется, если от оборудования вроде камер, приемников и передатчиков информации придется по максимуму отказаться.

«Что значит, вы не были на Альфе Центавра?»

Технологии дозаправки в космосе действительно существуют, и в целом используются уже достаточно давно. Топливо доставляется на орбитальные космические станции и даже на отдельные спутники, хотя это сделать уже гораздо сложнее. В любом случае, речь идет именно об объектах, которые находятся на орбите Земли. Как только вы собираетесь преодолеть притяжение родной планеты и отправиться в глубокий космос, ни о какой дозаправке не может быть и речи. Космические заправочные станции – все еще удел научной фантастики, в реальности это и технологически и экономически сложно и крайне невыгодно. И клиентов будет немного.

Остается последний, третий вариант, в котором «каждый сам за себя»: вы каким-то образом вырабатываете энергию на борту своего космического аппарата самостоятельно.

Наследие Эйнштейна

На спутниках, находящихся на низких околоземных орбитах, имеющих высоту над поверхностью планеты в диапазоне от 160 км до 2000 км, или на геосинхронных орбитах, когда период обращения спутника вокруг Земли равен суткам, используются солнечные батареи. Их работа основана на фотовольтаическом (его еще называют фотогальваническим) эффекте, за счет которого при попадании света на некоторые вещества вырабатывается электрический ток.

Фотогальванические решетки имеют мощность от 100 ватт до 300 киловатт и являются относительно недорогим источником энергии с минимальными правилами безопасности при использовании.

Вездесущая радиация

Впервые фотовольтаическая энергия была использована 17 марта 1958 года, когда был запущен спутник «Авангард-1» с шестью солнечными панелями на борту. Они проработали более шести лет, вырабатывая 1 ватт мощности. При этом эффективность этих батарей, то есть отношение вырабатываемой энергии к тому количеству, которое в итоге реально может использоваться для питания приборов, была всего 10 %.

Фотогальванические ячейки необходимо устанавливать таким образом, чтобы покрыть максимальную возможную часть поверхности спутника. Требуется постоянно следить за их положением относительно Солнца – желательно всегда оставаться перпендикулярно падающему излучению, поскольку таким образом вырабатываемый ток будет наибольшим.

Также важно рассчитать, чтобы за время нахождения на Солнце спутник успел накопить достаточно энергии: 40-45% от всего времени путешествия по орбите аппарат находится в тени Земли и вырабатывать ток не может. В целом, на эффективность работы батарей влияет множество факторов, таких как зависимость от температуры, расстояние до светила, деградация электроники под действием постоянного излучения – их все необходимо не забывать принимать в рассмотрение при выборе конкретного типа фотовольтаических ячеек.

Тепло нашего Солнца

В космических аппаратах используются два типа приборов, преобразующих тепло в электроэнергию: статические и динамические. В основе статических термоэлектрогенераторов обычно лежит радиоактивный источник. В динамических термоэлектрогенераторах, активно внедряемых в спутниковых системах GPS, используют щелочные электрохимические ячейки.

В основе данного способа получения энергии лежит эффект Зеебека. Он проявляется, когда соединяются два различных материала, при этом еще и находящиеся при разных температурах. Из-за этих разностей возникает поток электронов из более горячего конца к менее горячему – мы получаем электрический ток. Само устройство для получения энергии называется термоэлементом или термопарой.

У эффекта Зеебека существует и обратное явление, эффект Пельтье, в котором при пропускании электрического тока через сплав двух проводников или полупроводников в одну сторону место соединения нагревается, а в другую – охлаждается. Эффект Пельтье используется в космосе для охлаждения электронного оборудования: из-за отсутствия конвекции в вакууме это оказывается довольно проблематичной задачей.

Для использования эффектов Зеебека и Пельтье, разумеется, необходим источник тепла. Для этого специалисты NASA разработали стандартизированный радиоизотопный термоэлектрический генератор, работающий на плутонии-238 с периодом полураспада 87.7 лет. На данный момент 41 подобный генератор используется на 23 космических аппаратах, мощностью от 2 до 300 ватт. Принципиальный минус использования радиоактивных изотопов – возможность загрязнения окружающей среды, если запуск миссии пройдет неудачно.

Когда не работает GPS – во всем виноват SAMTEC

Более эффективными должны стать динамические электрогенераторы. Их главное отличие от статических состоит в способе превращения механической энергии в электрическую. Если в термоэлектрических элементах тепло напрямую превращается в электричество, то в электрохимических концентрационных элементах для этих целей используется энергия расширения паров натрия.

В спутниках GPS нового поколения были внедрены термоэлектрические преобразователи типа Solar AMTEC (solar alkali metal thermal-to electric conversion – преобразователь тепловой энергии солнца в электрическую на основе щелочных металлов), или, сокращенно SAMTEC.

В генераторах SAMTEC приемник солнечной радиации нагревает резервуар с жидким натрием, который испаряется. Пары натрия пропускаются через специальную мембрану, отделяющую газ высокого давления (температурой 800-1000оС) от газа низкого давления (температурой 200-300оС). Из-за разницы давления положительно заряженные ионы натрия скапливаются с одной стороны фильтра, а отрицательно заряженные электроны – с другой. Создаваемая разность потенциалов может генерировать электрический ток в подключенной внешней цепи.

Эффективность ячеек SAMTEC составляет 15-40%, при этом срок действия – 10-12 лет без понижения производительности в условиях постоянного облучения в космосе. Вырабатываемая мощность может варьироваться от нескольких ватт до киловатт.

Космические нити

Космический трос – тонкий металлический канат, прикрепленный к орбитальному или суборбитальному космическому аппарату – ракете, спутнику или космической станции. Длина космических тросов варьируется от нескольких метров до десятков километров (мировой рекорд – чуть более 32 километров). Тросы изготавливаются из особо прочных материалов, выдерживающих гигантские нагрузки.

Космические тросовые системы делятся на две категории – механические и электродинамические. Тросы первой категории используются, в частности, для обмена скоростями и соединения различных космических аппаратов между собой для движения как одно целое.

Для электродинамических тросовых систем используются специальные материалы, не только прочные, но и проводящие электрический ток (обычно алюминий или медь). При движении таких тросов в магнитном поле Земли, на свободные заряды в металлах действует электродвижущая сила, создающая электрический ток. Также вклад в данные процесс дают области ионизованного газа с различными плотностями и свойствами, присутствующие в космосе и наличие ионосферы у самой Земли.

Численные симуляции, подтвержденные экспериментально, показали, что для большого спутника электродинамический трос длиной десять километров может вырабатывать среднюю мощность в 1 киловатт с эффективностью превращения энергии 70-80%. Трос такой длины из алюминия будет весить всего 8 килограмм, что ничтожно по сравнению с весом среднего орбитального аппарата.

Нанокорабль

Космические генераторы разрабатываются и изучаются уже многие десятилетия. Они хорошо описаны с теоретический точки зрения, и подвергаются самым экстремальным земным условиям – но при этом развитие «внеземных» источников энергии идет гораздо медленнее, чем их земных собратьев. Удивительным образом, покорение космоса, идущее в авангарде технологий, оказывается весьма и весьма консервативной областью, в которой внедрение новых разработок происходит редко из-за множества рисков и экономических причин.

Однако мы находимся на заре развития совершенно новой области – наноспутников, и даже спутников гораздо меньшего размера. Они могут служить базой для космических тросовых систем и, запуская в космос сразу множество таких устройств, у нас получится вырабатывать гораздо больше электроэнергии. Возможно, именно им предстоит произвести революцию в области генерации энергии в космосе, расширить технологические возможности космических аппаратов и увеличить время их работы.

Фото: Giphy

Комментарии